
Object Oriented Programming

Krishna Daripa
Asst. Professor & Head

Computer Science Department

Sarsuna College

Sarsuna College
Affiliated to

Calcutta University

Java Virtual Machine

JDK- Java Development Kit

Contains the basic tools and libraries necessary for creating and
executing Java programs.

 JDK is a free software from Java Soft, a division of Sun Microsystems
now part of Oracle.

Contains a library of standard classes and a collection of utilities for
building, testing, and documenting Java programs.

The core Java Application Programming Interface (API) is the
aforementioned library of prefabricated classes.

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

7 main programs in JDK

1. javac: The Java compiler. This program compiles Java source codes into
byte codes.

2. java: The Java interpreter. This program runs Java byte codes.

3. javadoc: Generates API documentation in HTML format from Java source
code.

4. appletviewer: A Java interpreter that executes Java applet (a special kind of
Java Program) classes.

5. jdb: The Java debugger. Helps us find and fix bugs in Java programs.

6. javap: The Java disassembler. Displays the accessible functions and data in
a compiled class file. It also displays the meaning of the byte codes.

7. javah: Creates C header files that can be used to make C routines, that can
call Java routines,or make C routines that can be called by Java programs.

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

JVM – Java Virtual Machine

Java run time system, an abstract computing machine.

A specification that provides a runtime environment in which Java
bytecode can be executed.

JVM helps Java to solve both the security and the portability problems.

 Like a real computing machine, it has an instruction set and
manipulates various memory areas at run time.

Whenever you write java command on the command prompt to run the
java class, an instance of JVM is created.

Oracle's current implementations emulate the JVM on mobile, desktop
and server devices, but the JVM does not assume any particular
implementation technology, host hardware, or host operating system.

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

JRE - Java Runtime Environment

Provides the runtime environment.

Implementation of JVM

It contains a set of libraries and other files that JVM uses at runtime.

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Java Class Loader &
bytecode verifier awt net I/O RMI …

Interpreter

Garbage Collector

…

Threads and Synchronization

JRE
Java Class Libraries

JVM

JDK, JRE & JVM

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Development

tools.

For example

javac, java

etc.

Set of Libraries

Other Files

JRE

JDK

JVM Architecture

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Method
Area

Heap Stack
PC

Register

Run-Time
Constant

Pool

Native
Method
Stacks

Class Loader

Execution
Engine

Native Method
Interface

Native Method
Libraries

Run-Time Memory

Java Class loader Subsystem

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Used to load class files.

Linking and Initialization.

Whenever we run the java program, it is loaded first by the class loader.

Loading Linking

Initialization
Bootstrap Class Loader

Extension Class Loader

Application Class Loader

Verify

Prepare

Resolve

Class loader

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

 Loading is the process of finding the binary representation of a class or
interface type with a particular name and creating a class or interface
from that binary representation.

Creation of a class or interface consists of the construction in the method
area of the JVM of an implementation-specific internal representation.

There are two kinds of class loaders:

1. The bootstrap class loader supplied by the JVM.

2. User-defined class loaders.

User Defined Class loader

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Every user-defined class loader is an instance of a subclass of the

abstract class ClassLoader.

Applications employ user-defined class loaders in order to extend the

manner in which the JVM dynamically loads and thereby creates classes.

User-defined class loaders can be used to create classes that originate

from user-defined sources.

For example, a class could be downloaded across a network, generated

on the fly, or extracted from an encrypted file.

Java Class Loader

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

The superclass. It loads the

rt.jar file which contains all

class files of Java

Standard Edition like

java.lang package classes,

java.net package classes,

java.util package classes,

java.io package classes,

java.sql package classes

etc.

Subclass of Bootstrap

Class loader. It loads the

jar files located inside

$JAVA_HOME/jre/lib/ex

t directory.

Subclass of

Extension

class loader.

Bootstrap Class Loader
Loades classes from JRE/lib/rt.jar

Extension Class Loader
Loades classes from JRE/lib/ext or java.ext.dirs

Application Class Loader
Loades classes from CLASSPATH

Linking

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

 Linking is the process of taking a class or interface and combining it

into the run-time state of the Java Virtual Machine so that it can be

executed.

Linking a class or interface involves verifying and preparing that

class/interface, its direct superclass, its direct super-interfaces, etc.

Resolution of symbolic references in the class or interface is an optional

part of linking.

Linking

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Verify

• Bytecode verifier will verify whether the generated
bytecode is proper or not if verification fails we will
get the verification error.

Prepare

• For all class variables (static variables) memory will
be allocated and assigned with default values.

Resolve

• All symbolic memory references are replaced with
the original references from Method Area.

Linking: Verification

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Verification ensures that the binary representation of a class or interface
is structurally correct or not.

Verification may cause additional classes and interfaces to be loaded but
need not cause them to be verified or prepared.

If the binary representation of a class or interface does not satisfy the
static or structural constraints, then a VerifyError must be thrown at that
point.

Linking: Preparation

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Preparation involves creating the static fields for a class or interface and
initializing such fields to their default values.

This does not require the execution of any JVM code; explicit initializers
for static fields are executed as part of initialization, not preparation.

Preparation may occur at any time following creation but must be
completed prior to initialization.

Linking: Resolution

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

All symbolic memory references are replaced with the original
references from Method Area.

Resolution is the process of dynamically determining concrete values
from symbolic references in the run-time constant pool.

If an error occurs during resolution of a symbolic reference, then an
instance of IncompatibleClassChangeError (or a subclass) must be
thrown at the point.

Initialization

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Initialization of a class or interface consists of executing its class or
interface initialization method.

Prior to initialization, a class or interface must be linked, that is,
verified, prepared, and optionally resolved.

The implementation of the JVM is responsible for taking care of
synchronization and recursive initialization.

All static variables will be assigned with the original values, and the
static block will be executed.

JVM Memory: Run-Time Data Areas

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

 Like a real computing machine, JVM has an instruction set and
manipulates various memory areas at run time.

The Java Virtual Machine defines various run-time data areas that are
used during execution of a program.

Some of these data areas are created on Java Virtual Machine start-up
and are destroyed only when the Java Virtual Machine exits.

 Other data areas are per thread. Per-thread data areas are created when a
thread is created and destroyed when the thread exits.

JVM Memory or Runtime Data Areas

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Per-class structures or

Meta data such as the

runtime constant pool, data

field and method data, the

code for methods.

Object

Instances

For each thread, private stack

containing Frames for each

method call. Frames contain

local variables, partial results,

etc.

Address of current JVM

instruction in execution of

a thread

For every thread a separate native

stack is created containing native

method information.

Method
Area

Heap Stack
PC

Register

Run-Time
Constant

Pool

Native
Method
Stacks

per-class or per-interface run-

time representation of the

constant_pool table in a class

file.

JVM Runtime Data Areas

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Method Area:

It is shared among all Java Virtual Machine threads. There is only one method
area per JVM

Stores per-class structures or meta data such as the runtime constant pool, data
field and method data, the code for methods.

The method area is created on virtual machine start-up.

Heap Area:

All the Objects, their related instance variables are stored in the heap.

This memory is common and shared across multiple threads.

The heap is created on virtual machine start-up.

Heap storage for objects is reclaimed by an automatic storage management
system, known as a garbage collector. Objects are never explicitly deallocated.

JVM Runtime Data Areas

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Stack:

For every thread, JVM creates one private run-time stack at the same time when
the thread is created.

Every block of this stack is called frame which store methods calls.

A new frame is created each time a method is invoked. It holds local variables
and partial results, and plays a part in method invocation and return.

A frame is destroyed when its method invocation completes.

PC Registers:

JVM can support many threads of execution at once.

Each JVM thread has its own PC register.

Store address of current JVM instruction in execution of a thread.

JVM Runtime Data Areas

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Run Time Constant Pool:

A per-class or per-interface run-time representation of the constant_pool table in a
class file.

Contains several kinds of constants, ranging from numeric literals known at
compile-time to method and field references that must be resolved at run-time.

The run-time constant pool serves a function similar to that of a symbol table with a
wider range.

Native Method Stack:

 For every thread, separate native stack is created.

It stores native method information.

Execution Engine

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Execution engine executes the bytecode.

It is not practical to compile an entire Java program into executable code
all at once, because Java performs various run-time checks.

Initially, the JVM was designed as an interpreter for bytecode.

Generally, when a program is compiled to an intermediate form and then
interpreted by a virtual machine, it runs slower than it would run if
compiled to executable code.

However, with Java, the difference between the two is not so great.

Because bytecode has been highly optimized.

To boost the performance Sun provides Just-In-Time (JIT) Compiler for
Bytecode.

Parts of Execution Engine

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

1. Interpreter : It interprets the bytecode line by line and then executes
it.

2. Just-In-Time Compiler(JIT) : It is used to increase efficiency of
interpreter. Whenever the interpreter sees repeated method calls, it
compiles the entire bytecode and changes it to native code. JIT provide
direct native code for that part so re-interpretation is not required, thus
efficiency is improved.

3. Garbage Collector : It destroys un-referenced objects.

Java Native Interface & Native Method Library

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Java Native Interface (JNI) :

It is an interface which interacts with the Native Method Libraries and provides the
native libraries(C, C++) required for the execution. It enables JVM to call C/C++
libraries and to be called by C/C++ libraries which may be specific to hardware.

Native Method Libraries :

It is a collection of the Native Libraries(C, C++) which are required by the
Execution Engine.

Garbage Collector

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

A program that manages memory by automatically deleting
unreferenced objects.

Garbage Collection is the process of reclaiming the runtime unused
memory automatically.

In Java, the programmer need not to care for all those objects which are
no longer in use. Garbage collector destroys these objects.

Garbage collector is best example of Daemon thread as it is always
running in background.

Automatic Garbage Collection

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Automatic garbage collection is the process of looking at heap memory,
identifying which objects are in use and which are not, and deleting the
unused objects.

An object in use, or a referenced object, means that some part of your
program still maintains a pointer to that object.

An unused object, or unreferenced object, is no longer referenced by any
part of your program.

So the memory used by an unreferenced object can be reclaimed.

Garbage Collector

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

How can a object be unreferenced?

Some techniques:

1. By nulling the reference

Employee e=new Employee();

e=null;

2. By assigning a reference to another
Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;

3. By anonymous object
new Employee();

Garbage Collection

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

finalize() method :

Called by the garbage collector on an object when garbage collection determines

that there are no more references to the object.

The finalize method of class Object performs no special action; it simply returns.

Invoked each time before the object is garbage collected.

Subclasses of Object may override this method.

A subclass overrides the finalize method to dispose of system resources or to

perform other cleanup.

This method is defined in java.lang.Object

protected void finalize(){}

Garbage Collection

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Explicit Garbage Collection by gc() method

The gc() method is used to invoke the garbage collector to perform cleanup
processing. The gc() is found in System and Runtime classes within java.lang
Package.

1. Using System.gc() method :

System class contain static method gc() for requesting JVM to run Garbage
Collector. This is more convenient.

2. Using Runtime.getRuntime().gc() method :

In Runtime class gc() is not a static method rather it is an instance method, so it
can not be called directly. To invoke it we need the help of the static method
getRuntime().

Garbage Collection: Explicit Example

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

public class TestGarbage1{
public void finalize(){

System.out.println("object is garbage collected");
}
public static void main(String args[]){

TestGarbage1 s1=new TestGarbage1();
TestGarbage1 s2=new TestGarbage1();
s1=null;
s2=null;
System.gc();

}
}

Calling the gc() suggests that the JVM expend effort toward recycling unused objects. When control returns, the JVM has

made a best effort to reclaim space from all unused objects. There is no guarantee that this effort will recycle any particular

number of unused objects, reclaim any particular amount of space, or complete at any particular time, if at all, before the

method returns or ever.

Few References

Krishna Daripa, Assistant Professor & Head, Computer Science Department, Sarsuna College, Kolkata-700061

Java The Complete Reference. Herbert Schildt, McGrawHill
Education

Object-Oriented Software Development Using Java. Xiaoping Jia.
Addison Wesley, ISBN 0-201-73733-7.

Head First Object-Oriented Analysis and Design. Brett D.
McLaughlin, Gary Pollice, and Dave West. O’Reilly.

Head First Design Patterns. Eric Freeman and Elizabeth Freeman.
O’Reilly.

Java How to Program. Paul Deitel, Harvey Deitel, Pearson

